An Efficient Procedure for the Regioselective Monoprotection of 1,2-Diols

Derek H. R. Barton* and Jieping Zhu

Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.

(Received in USA 30 June 1992)

key words: 1,2-diols; isopropylidene ketals; carbohydrates; trimethylaluminum; regioselectivity.

Abstract Nucleophilic ring opening of isopropylidene ketals by trimethylaluminum is described. This reagent offers a new method for selective monoprotection of 1,2-diols. The regioselectivity of this reaction was studied with simple diols and with carbohydrates.

Selective protection of a specific hydroxy group in a polyol is an important tool in organic synthesis ¹. One approach to the difficult problem of efficient monofunctionalization of diols containing similiar or equivalent hydroxy groups is the reductive ² or oxidative ³ cleavage of acetals or ketals. A number of reagents have been developed, some of which have been routinely used in carbohydrate chemistry ⁴.

In connection with ongoing research, we had occasion to study the reaction between trimethylaluminum and ketals ⁵. We disclose here an efficient method for the regioselective monoprotection of 1,2-diols (Scheme 1).

When isopropylidene ketals 1, prepared easily from the corresponding diol, were treated with 3 eq of trimethylaluminum in dichloromethane, hydroxy <u>tert</u>-butyl ethers 2 were obtained in good to excellent yield. The regiochemistry was determined by oxidation to the corrsponding aldehyde 4. Only in the case of 1a, was another regioisomer 3a isolated. It is important to note that the more sterically demanding secondary alcohol was selectively protected as the <u>tert</u>-butyl ether in this transformation.

The mechanism of the reaction probably involves initial rapid and reversible association of the Lewis acid with the ketal oxygen, followed by the slow, rate-controlling cleavage of the ring to form the oxonium ion. Addition of a nucleophilic methyl to this intermediate gives the observed products on hydrolysis (Scheme 2). Intermediate A has the electron donating group R closer to the incipient oxonium ion than in **B**, hence it is more effective in stabilizing the positive charge. In addition, A was generated by the coordination of the trimethylaluminum to the less hindered oxygen atom 6 , and its formation should be preferred due to steric and polar effects. Intermolecular delivery of methyl group was demonstrated as more than 2 eq of trimethylaluminum were needed to complete the reaction. The non-selective directing ability of a phenyl group has also been observed in a related system 7. Solvent effects were also briefly studied; it was found that the reaction is more facile in dichloromethane than in other non-polar solvents, e.g. hexane and toluene. However, no change in regioselectivity was observed. The reaction did not occur in ether which is the solvent of choice in the reductive cleavage of ketals by LAH-AlCl₃.

Scheme 2

Since differential protection of the hydroxy group in a polyol is a more serious challenge, we turned our attention to carbohydrates. Treatment of 1,2:5,6-di-O-isopropylidene-3-p-toluenesulfonyl-D-glucofuranose 5a with trimethylaluminum under the identical conditions as for 1 gave an essentially quantitative yield of the corresponding 6-O-tert.-butyl ether 6a (Scheme 3). Elucidation of the structure in this case was made by a combination of chemical and spectroscopic evidence. First, the observation of the anomeric proton (δ =5.89ppm, d, J=3.70 Hz) in the ¹H NMR spectrum showed that the furanose ring was not opened. When the product 6a was submitted to acidic conditions (TsOH, acetone, reflux), 5a was regenerated via the deprotection of the-tert.-butyl ether and the isopropylidenation of the resulting diol. Thus, the basic structure of the molecule was unchanged. The ¹³C and ¹H NMR spectra confirmed the presence of a furanose ring, one tert.-butyl group and

one isopropylidene ring. Four possible regioisomers should be taken into consideration as far as the regio- and chemo-selectivity are concerned. The location of the <u>tert</u>.-butyl group was determinated by careful examination of the 2D ¹H-¹H COSY spectra. The correlation found between the H-5 proton (δ =3.78ppm, m) and the hydroxyl proton (δ =2.43-2.45ppm br.s) indicated that the hydroxyl group was attached to C-5. In order to confirm this observation, the product **6a** was transformed into the acetyl derivative **7** under standard conditions (Ac₂O-Py.-DMAP). The low field shift of the H-5 proton in compound **7** (δ =4.92ppm), and the splitting pattern (ddd, J=9.52, 3.34 and 2.28 Hz) are in agreement with the deshielding effect of an acetyl group. Furthermore, when **6a** was submitted to a Swern oxidation⁸, ketone <u>8</u> and not an aldehyde was obtained. We observed the low field shift of the H-6 protons which appeared now as an AB system (δ =4.05, 4.18ppm, J=18.5 Hz). The above mentioned structural information confirmed the proposed structure **6a**.

reagents and conditions: a) AlMe₃, CH₂Cl₂, -78°C, 4hrs, rt. 15hrs

b) PhCOCl, Py. DMAP, rt. c) Swern oxidation

d) Acetone, pTsOH, rt.

Scheme 3

It is necessary to protect the 3-hydroxy group. The reaction of 1,2:5,6-di-O-isopropylidene-D-glucofuranose 5d (R=H) with trimethylaluminum afforded a complex mixture. The disapperance of the anomeric proton in the ¹H NMR spectrum indicated that the furanose ring was opened in this case. One major compound isolated had physical data (¹H NMR, ¹³C NMR, MS, IR and microanalysis) corresponding to the 6-O-<u>tert</u>.-butyl-1,2-O-isopropylidene-1-methyl-D-glucitol 9 (Scheme 4). No effort was made to determine the stereochemistry of the newly created chiral centre.

Scheme 4

The regioselectivity of the reaction is clearly determined by the directing effect of the $3-\beta-p$ -toluenesulfonyl group in 5a. However, the acetate 5b and the benzyl ether 5c also opened in the same sense in satisfactory yields (Scheme 6). The epimer 10 of 5a, which was prepared from 1,2:5,6-di-O-isopropylidene-D-glucofuranose by sequential oxidation and reduction, followed by tosylation, also opened in the same sense to give 11. The reaction of the mannitol derivatives 12a, 12b and 12c was then studied. The ditosylate 12a and diacetate 12b reacted slowly and gave only moderate yields of products with both ketal groups opened to furnish terminal t-<u>tert</u>-butyl groups. On the other hand, the dibenzyl derivative 12c afforded the mono-ketal derivative 13c with poor conversion but good yield.

The structures assigned were confirmed by acetylation or oxidation and study of the physical data of the derivatives (Scheme 5). Thus, 6b gave 15 on acetylation, 11 gave 17 and 14b gave the tetra-acetate 18. The derivative 6c afforded the ketone 16 on oxidation.

Scheme 5

One striking feature of this reaction is that the p-toluenesulfonyl group was intact even in the case of 1,2: 5,6-di-O-isopropylidene-3-p-toluenesulfonyl-D-allo-furanose <u>10</u> where nucleophilic displacement of the p-toluenesulfonyl group was a sterically favored process. In contrast, we noticed in control experiments that the reaction of simple p-toluenesulfonyl derivatives, e.g., tosylated cyclododecanol, produced mixtures of methylated and elimination products (ratio 1/5).

The reversed regioselectivity between the simple ketals like 1 and the more complex carbohydrate derivatives may be the result of multiple binding sites for the trimethylaluminum. In any case, this new reaction should prove useful in the manipulation of complex carbohydrate structures.

a) Yield based on the reacted starting material b) Isolated as tetraacetate

Scheme 6

Experimental Section

All reactions were performed under an argon atmosphere. Melting points were determined with a Kofler apparatus and were uncorrected. Infrared (IR) spectra were recorded on a Perkin-Elmer spectrometer. ¹H NMR spectra were measured on a Varian-200 spectrometer in CDCl₃ with tetramethylsilane as internal standard (δ ppm). Splitting patterns were indicated as s (Singlet); d (doublet); t (triplet); q (quartet); m (multiplet); br.s (broad singlet). GC/MS were performed on a Hewlett 5890 Packard series II instruments with DB-5 capillary column. Microanalyses were accomplished at the Atlantic Microlab Inc. Products were purified by flash chromatography on silica gel 60 (230-400 mesh ASTM), Merck Art 9385. Solvents and reagents were purified acoording to standard laboratory techniques.

Ketals **1a-1c** were prepared from the corresponding 1,2-diols according to the literature¹⁰. Tosylation¹¹, benzylation ¹² and acetylation ¹³ of 1,2:5,6-di-O-isopropylidene-D-glucofuranose, 1,2:5,6-di-O-isopropylidene-D-allofuranose and 1,2:5,6-di-O-isopropylidene-D-mannitol were carried out under standard conditions. 1,2:5,6-Di-O-isopropylidene-D-allofuranose was prepared from 1,2:5,6-di-O-isopropylidene-D-glucofuranose by sequential oxidation and reduction procedures ⁹.

General Procedure for the Nucleophilic Ring Opening of Isopropylidene Ketals with Trimethylaluminum: 1,2:5,6-Di-*O*-isopropylidene-3-*p*-toluenesulfonyl-*D*-glucofuranose 5a (1mmol, 414mg) and freshly distilled dichloromethane were introduced under argon to a flame dried flask and cooled to -78°C. Trimethylaluminum (8eq. 2M solution in hexane) was then added dropwise. The reaction mixture was stirred at -78°c for 4hrs and at room temperature for 15hrs. It was then quenched by addition of aq. NH4Cl. The precipitate was filtered off. The filtrate was extrated with dichloromethane repeatedly. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate and concentrated <u>in vaccuo</u>. This gave the pure 6-*O*-tert-butyl ether **6a** as a colourless oil (422mg, 98%); IR: 3552, 3044, 2972, 1597, 1365, 1176, 1020 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 7.84, 7.35 (4H, dd, J=8.32 Hz), 5.89 (1H, d, J=3.70 Hz), 4.90 (1H, d, J=2.7 Hz), 4.75 (1H, d, J=3.70 Hz), 4.16 (1H, dd, J=9.24, 2.70 Hz), 3.78 (1H, m), 3.56 (1H, dd, J=9.24, 2.82 Hz), 3.36 (1H, dd, J=9.24, 5.80 Hz), 2.43-2.45 (1H, br.s), 2.45 (3H, s), 1.46 (3H, s), 1.29 (3H, s), 1.16 (9H, s); ¹³C NMR δ_{13C} 145.22, 132.46, 129.77, 128.19, 112.35, 104.82, 82.83, 82.00, 78.52, 73.29, 66.98, 62.67, 27.43, 26.49, 26.26, 21.64; m/z: 415 (M⁺-15), 359 (M⁺-71), 343 (M⁺-87); Anal. Calcd. for C₂₀H₃₀SO₈: C, 55.80; H, 7.02. Found: C, 55.55; H, 6.99.

The following products were obtained by this procedure:

2a: Yield: 74%; m.p. 71-72⁰C (from ether-hexane); IR: 3579, 3028, 2970, 2933, 1601, 1450, 1389, 1189, 1083, 1036 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 7.2-7.4 (5H, m), 4.60 (1H, dd, J=7.26, 4.82 Hz), 3.46-3.54 (2H, m), 2.44 (1H, dd, J=8.38, 4.82 Hz), 1.17 (9H, s); ¹³C NMR δ_{13C} 142.18, 128.12, 127.23, 126.27, 75.10, 74.79, 67.76, 28.71; m/z: 163 (M⁺-31), 121 (M⁺-73); Anal. Calcd. for C₁₂H₁₈O₂: C, 74.19; H, 9.34. Found: C, 74.16; H, 9.31.

3a: Oil; Yield: 10%; IR: 3565, 2969, 2928, 1450, 1363, 1320, 1189, 1077 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 7.2-7.5 (5H, m), 4.79 (1H, dt, J=9.02, 2.26 Hz), 3.52 (1H, dd, J=9.02, 2.78 Hz), 3.32(1H, t, J=9.02 Hz), 3.08 (1H,

d, J=2 Hz), 1.21 (9H, s); ¹³C NMR δ_{13C} 140.41, 128.20, 127.62, 126.09, 73.52, 73.06, 67.72, 27.48; m/z: 194 (M+·) 163 (M+·-31), 137 (M+·-57), 121 (M+·-73).

2b: Oil; Yield: 83%; IR: 3569, 3063, 2961, 2933, 1458, 1389, 1190, 1060 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 3.30-3.55 (3H, m), 2.3 (1H, br.s), 1.20-1.55 (6H, m), 1.17 (9H, s), 0.85 (3H, t, J=6.02 Hz); ¹³C NMR δ_{13C} 73.73, 71.60, 65.13, 33.21, 28.62, 27.70, 22.86, 13.92; m/z: 174 (M⁺), 159 (M⁺-15), 143 (M⁺-31); Anal. Calcd. for C₁₀H₂₂O₂: C, 68.92; H, 12.72. Found: C, 69.01; H, 12.70.

2c: Oil; Yield: 86%; IR: 3571, 3054, 2975, 2879, 1420, 1390, 1190, 1046, 1017 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 3.36-3.56 (3H, m), 2.29 (1H, br.s), 1.4-1.6 (2H, m), 1.18 (9H, s), 0.84 (3H, t, J=7.5 Hz); ¹³C NMR δ_{13C} 73.71, 72.69, 64.67, 28.47, 25.98, 9.57; m/z: 146 (M⁺·), 115 (M⁺·-31).

6b: Yield: 86%; m.p. 84-85°C (from ether-hexane); IR: 3567, 3052, 2984, 1420, 1258, 1161, 1072, 1016 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 5.94 (1H, d, J=3.90 Hz), 4.51 (1H, d, J=3.66 Hz), 4.33 (1H, d, J=2.12 Hz), 4.00-4.15 (m, 2H), 3.40-3.65 (2H, m), 3.1-3.4 (2H, br.s), 1.47 (3H, s), 1.30 (3H, s), 1.21 (9H, s); ¹³C NMR δ_{13C} 111.59, 104.92, 85.08, 80.20, 75.67, 73.69, 69.45, 62.64, 27.25, 26.62, 25.99; m/z: 277 (M^{+.+1}), 261 (M^{+.-15}), 247 (M^{+.+1-30}), 189 (M^{+.-87}). Anal. Calcd. for C₁₃H₂₄O₆: C, 56.51; H, 8.75. Found: C, 56.44; H, 8.69.

6c: Oil; Yield: 81%; IR: 3564, 3036, 2973, 2938, 1364, 1212, 1193, 1075 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 7.30-7.40 (5H, m), 5.90 (1H, d, J=3.76 Hz), 4.65, 4.66 (2H, dd, J=13 Hz), 4.57 (1H, d, J=3.76 Hz), 4.00-4.15 (3H, m), 3.61 (1H, dd, J=9.22, 3.06 Hz), 3.40 (1H, dd, J=9.22, 5.68 Hz), 1.47 (3H, s), 1.30 (3H, s). 1.18 (9H, s); ¹³C NMR δ_{13C} 137.53, 128.42, 127.84, 127.72, 111.61, 105.06, 82.35, 81.89, 80.03, 73.20, 72.33, 67.86, 63.42, 27.51, 26.72, 26.26; m/z: 309 (M⁺-57), 253 (M⁺-113). Anal. Calcd. for C₂₀H₃₀O₆: C, 65.55; H, 8.25. Found: C, 65.69; H, 8.27.

9: Yield: 43%; m.p. 73-74⁰C (from hexane); IR: 3543, 3047, 2973, 2936, 1369, 1247, 1147, 1063 cm⁻¹; ¹H NMR δ_{H} 3.99-4.22 (3H, m), 3.89 (1H, dd, J=6.46, 3.50 Hz), 3.72 (1H, d, J=2.56 Hz), 3.56-3.68 (2H, m), 3.16 (1H, d, J=4.88 Hz), 3.11 (1H, d, J=5.94 Hz), 1.40 (3H, s), 1.35 (3H, s), 1.22 (9H, s), 1.18 (3H, d, J=6.48 Hz); ¹³C NMR δ_{13C} 109.00, 75.78, 75.70, 74.98, 74.83, 70.67, 68.34, 66.75, 28.59, 26.74, 25.26, 19.20; m/z: 277 (M⁺-15), 221 (M⁺-71), 202 (M⁺-89). Anal. Calcd. for C₁₄H₂₈O₆: C, 57.51; H, 9.65. Found: C, 57.45; H, 9.63.

11: Yield: 85.8%; m.p. 101-102⁰C (from ether-hexane); IR: 3571, 3059, 2970, 2934, 1596, 1452, 1366, 1177, 1121, 1018 cm⁻¹; ¹H NMR δ_{H} 7.83, 7.31 (4H, dd, J=8.34 Hz), 5.71 (1H, d, J=3.62 Hz), 4.80 (1H, dd, J=8.32, 4.78 Hz), 4.53 (1H, dd, J=4.78, 3.62 Hz), 4.10 (1H, dd, J=8.32, 3.56 Hz), 3.87 (1H, td, J=7.80, 3.56 Hz), 3.16-3.38 (2H, m), 2.42 (3H, s), 1.49 (3H, s), 1.26 (3H, s), 1.11 (3H, s); ¹³C NMR δ_{13C} 145.08, 133.12, 129.63, 128.17, 113.33, 103.77, 77.87, 77.47, 75.78, 73.39, 69.92, 61.78, 27.35, 26.57, 26.51, 21.58; m/z: 415 (M⁺⁻¹⁵), 359 (M⁺⁻⁷¹); Anal. Calcd. for C₂₀H₃₀SO₈: C, 55.80; H, 7.02. Found: C, 55.68; H, 7.00.

13c: Oil; Yield: 92%; IR: 3559, 3060, 3030, 2971, 1603, 1451, 1365, 1193, 1066, 1026 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 7.2-7.4 (10H, m), 4.76 (2H, d, J=2.06 Hz), 4.65 (2H, d, J=1.96 Hz), 4.26 (1H, t, J=6.22 Hz), 3.90-4.05 (4H, m), 3.84 (1H, dd, J=8.16, 7.00 Hz), 3.66 (1H, dd, J=8.16, 2.48 Hz), 3.52 (1H, dd, J=9.0, 3.68 Hz), 3.38 (1H, dd, J=9.0, 5.66 Hz), 1.43 (3H, s), 1.34 (3H, s), 1.18 (9H, s); ¹³C NMR δ_{13C} 138.55, 128.44, 128.34, 128.27, 127.82, 108.52, 79.36, 79.22, 75.94, 74.57, 73.85, 73.22, 69.53, 66.84, 62.50, 27.42, 26.50, 25.08; m/z: 458 (M^{+.}), 401 (M^{+.-57}); Anal. Calcd. for C₂₇H₃₈O₆: C, 70.72; H, 8.35. Found: C, 70.98; H, 8.39.

14a: Oil; Yield: 62%; IR: 3518, 3068, 3015, 2983, 1536, 1433, 1301, 1012 cm⁻¹; ¹H NMR δ_H 7.80, 7.31 (8H, J=8.32 Hz), 5.10 (2H, d, J=8.00 Hz), 3.22-3.40 (6H, m), 2.85 (2H, br.s), 2.41 (6H, s), 1.10 (18H, s); ¹³C NMR δ_{13C} 144.82, 133.82, 129.56, 127.90, 78.60, 73.48, 68.11, 61.62, 27.35, 21.57; Anal. Calcd. for C₂₈H₄₂S₂O₁₀: C, 55.80; H, 7.02. Found: C, 55.79; H, 7.31.

Oxidation of Compound 2 Using Pyridinium Dichromate (PDC) as Oxidizing Agent: To the suspension of 5 eq. of PDC in dry dichloromethane, alcohol 2 was added dropwise under argon. The reaction was follow by TLC, once the reaction was completed, flash chromatography of the crude mixture yielded the pure carbonyl compound.

The following aldehydes were obtained by this procedure:

α-phenyl-α-tert-butyloxyacetaldehyde 4a: Oil; Yield: 82%; IR: 2968, 1727, 1448, 1365, 1287, 1186, 1091, 1066 cm⁻¹; ¹H NMR δ_H 9.55 (1H, d, J=2.48 Hz), 7.2-7.45 (5H, m), 4.88 (1H, d, J=2.48 Hz), 1.27 (9H, s); ¹³C NMR δ_{13C} 200.62, 136.40, 128.63, 128.12, 126.70, 79.20, 75.77, 28.43; m/z: 192 (M⁺·), 177 (M⁺·-15, 10), 163 (M⁺·-29).

 α -tert-butyloxyhexanal 4b: Oil; Yield: 92%; IR: 3048, 2963, 2937, 2873, 2802, 1726, 1464, 1390, 1189, 1083 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 9.59 (1H, d, J=2.94 Hz), 3.75 (1H, td, J=7.05, 2.94 Hz), 1.20-1.55 (6H, m), 1.18 (9H, s), 0.88 (3H, t, J=6.8 Hz); ¹³C NMR δ_{13C} 206.62, 77.08, 74.60, 30.99, 28.19, 26.90, 22.36, 13.66; m/z: 157 (M⁺-15), 143 (M⁺-29).

Swern Oxidation: 3 eq. of DMSO was added dropwise to a solution of oxalyl chloride (1.5 eq.) in dichloromethane at -78°c. Stirring was continued for about 15minutes followed by addition of the alcohol in dichloromethane. The reaction mixture was stirred for 1hr and triethylamine (5 eq.) was added dropwise at the same temperature. The cooling bath was then removed and aq. NaHCO₃ solution was added at room temperature. The aqueous phase was extracted with dichloromethane, the combined organic phase was dried and evaporated to give the slight yellow crude mixture which was purified by the flash chromatography.

The following carbonyl compounds were obtained by this procedure:

8: Oil; Yield: 81%; IR: 3185, 3050, 2973, 2935, 1740, 1654, 1597, 1374, 1213, 1190, 1177, 1092 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 7.68, 7.32 (4H, dd, J=8.36 Hz), 6.03 (1H, d, J=3.68 Hz), 5.11(1H, d, J=3.24 Hz), 4.86 (1H, d, J=3.24 Hz), 4.82 (1H, d, J= 3.68 Hz), 4.18, 4.05 (2H, dd, J=18.5 Hz), 2.42 (3H, s), 1.44 (3H, s),

1.29 (3H, s), 1.50 (9H, s); ¹³C NMR δ_{13C} 201.96, 145.57, 132.00, 129.93, 128.05, 112.92, 105.07, 82.66, 82.44, 74.23, 67.11, 27.12, 26.57, 26.22, 21.64; m/z: 413 (M⁺--15), 371 (M⁺--57), 341 (M⁺--87), 313 (M⁺--15))

16: Oil; Yield: 89%; IR: 3063, 2972, 2937, 1734, 1452, 1374, 1212, 1190, 1161, 1106, 1075, 1025 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 7.15-7.35 (5H, m), 6.03 (1H, d, J=3.62 Hz), 4.81 (1H, d, J=3.54 Hz), 4.57 (1H, d, J=3.54 Hz), 4.50, 4.60 (2H, dd, J=11.54 Hz), 4.35 (1H, d, J=3.62 Hz), 4.20, 4.30 (2H, dd, J=18.66 Hz), 1.45 (3H, s), 1.30 (3H, s), 1.15 (9H, s); ¹³C NMR δ_{13C} 204.58, 136.78, 128.38, 127.95, 127.66, 112.32, 105.65, 84.80, 83.53, 81.73, 73.99, 72.47, 67.64, 27.22, 26.85, 26.27; m/z: 349 (M⁺⁻⁻15), 307 (M⁺⁻⁻57), 289 (M⁺⁻⁻75), 249 (M⁺⁻⁻115). Anal. Calcd. for C₂₀H₂₈O₆: C, 65.92; H, 7.74. Found: C, 65.75; H, 7.78.

Acetylation of 11: To a solution of 6-*O*-tert.-butyl-1,2-*O*-isopropylidene-3-*p*-toluenesulfonyl-*D*-allofuranose (110 mg, 0.26 mmol) in dry pyridine, 3eq of acetic anhydride (0.78 mmol, 78 µl and catalytic amount of DMAP was added at 0°c. The reaction mixture was stirred at room temperature for 20h. After evaporation of the solvent, flash chromatography (eluent: ether/hexane=2/3) gave the desired compound <u>17</u> (116 mg, yield 96%). m.p. 107-108⁰C (hexane-ether); IR: 3050, 2971, 1741, 1597, 1367, 1217, 1189, 1177, 1019 cm⁻¹; ¹H NMR δ_H 7.34, 7.86 (4H, dd, J=8.5 Hz), 5.70 (1H, d, J=3.72 Hz), 5.03 (1H, td, J=6.22 Hz), 4.85 (1H, dd, J=8.70, 4.70 Hz), 4.52 (1H, dd, J=4.70, 3.72 Hz), 4.30 (1H, dd, J=8.70, 3.70 Hz), 3.43 (1H, dd, J=9.38, 6.40 Hz), 3.35 (1H, dd, J=9.38, 6.00 Hz), 2.44 (3H, s), 2.02 (3H, s), 1.49 (3H, s), 1.26 (3H, s), 1.10 (9H, s); ¹³C NMR δ_{13C} 170.14, 145.29, 133.49, 129.78, 128.33, 113.60, 104.01, 77.49, 76.90, 76.26, 73.36, 70.99, 59.42, 28.18, 27.14, 26.44, 21.43, 20.72; m/z: 457 (M^{+.-}15), 399 (M^{+.-}73), 357 (M^{+.-}115). Anal. Calcd. for C₂₂H₃₂SO₉: C, 55.92; H, 6.83. Found: C, 56.02; H, 6.83.

The following compounds were obtained by this procedure:

3,5-Di-acetyl-6-*O*-<u>tert</u>.-butyl-1,2-*O*-isopropylidene-*D*-glucofuranose 15: Yield 91%; IR: 2971, 2928, 2852, 1744, 1370, 1216, 1160, 1071, 1021, 854 cm⁻¹; ¹H NMR δ_{H} 5.88 (1H, d, J=3.72 Hz), 5.30 (1H, d, J=2.88 Hz), 5.07 (1H, ddd, J=9.60, 4.90, 2.34 Hz), 4.47 (1H, dd, J=9.60, 2.88 Hz), 4.42 (1H, d, J=3.72 Hz), 3.62 (1H, dd, J=10.80, 2.34 Hz), 3.49 (1H, dd, J=10.80, 4.90 Hz), 2.00 (3H, s), 1.97 (3H, s), 1.48 (3H, s), 1.27 (3H, s), 1.13 (9H, s); ¹³C NMR δ_{13C} 169.81, 169.57, 112.27, 105.00, 83.19, 76.32, 74.84, 73.08, 69.28, 61.18, 27.31, 26.62, 26.25, 20.87, 20.64; m/z: 345 (M⁺-15), 289 (M⁺-71), 287 (M⁺-73), 245 (M⁺-115). Anal. Calcd. for C₁₇H₂₈O₈: C, 56.66; H, 7.83. Found: C, 56.75; H, 7.86.

2,3,4,5-Tetraacetyl-1,6-di-*O*-tert-butyl-*D*-mannitol **18**: Yield 48% (two steps from 12b); IR: 3051, 2971, 1741, 1365, 1214, 1089, 1036 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 5.45 (2H, d, J=7.6 Hz), 5.01 (2H, br.q, J=5.60 Hz), 3.45 (2H, dd, J=10.1, 4.68 Hz), 3.30 (2H, dd, J=10.1, 5.68 Hz), 2.03 (6H, s), 2.00 (6H, s), 1.09 (18H, s); ¹³C NMR δ_{13C} 170.02, 169.74, 73.29, 69.83, 68.84, 60.38, 27.26, 21.02, 20.89; m/z: 389 (M⁺-73), 303 (M⁺-159), 231 (M⁺·/2); Anal. Calcd. for C₂₂H₃₈O₁₀: C, 57.13; H, 8.28. Found: C, 57.30; H, 8.22.

5-Acetyl-6-O-tert-butyl-1,2-O-isopropylidene-D-glucofuranose 7: Yield: 94%; IR: 2971, 2936, 1741, 1596, 1465, 1365, 1217, 1177, 1093; ¹H NMR $\delta_{\rm H}$ 7.34, 7.77 (4H, dd, J=8.38 Hz), 5.85 (1H,

d, J=3.66 Hz), 5.02 (1H, d, J=2.72 Hz), 4.92 (1H, ddd, J=9.52, 3.34, 2.28 Hz), 4.68 (1H, d, J=3.66 Hz), 4.62 (1H, dd, J= 9.52, 2.72 Hz), 3.65 (1H, dd, J=10.94, 2.28 Hz), 3.50 (1H, dd, J=10.94, 2.28 Hz), 3.50 (1H, dd, J=10.94, 3.34 Hz), 2.44 (3H, s), 1.98 (3H, s), 1.49 (3H, s), 1.29 (3H, s), 1.13 (9H, s); ¹³C NMR δ_{13C} 170.15, 145.51, 133.03, 130.07, 128.20, 112.75, 104.87, 82.66, 80.55, 75.73, 69.51, 60.00, 27.21, 26.47, 26.32, 21.48, 20.87; m/z: 457 (M^{+.-}15), 399 (M^{+.-}73); Anal. Calcd. for C₂₂H₃₂SO₉: C, 55.92; H, 6.83. Found: C, 55.86; H, 6.78.

Acknowledgements: Dr. Jieping Zhu is a Schering-Plough Scholar.

References and Notes

- a)Wilkinson, S.G. in "Comprehensive Organic chemistry", Barton, D.H.R. and Ollis, W.D.; Ed. Stoddart, Vol 1, Pergamon press; New York, 1979, p 681-687; b) Greene, T.W. Wuts, P.G.M. "Protective Groups in Organic Synthesis", 2nd ed., John Wiley & Sons, Inc., New York, 1991.
- a) Eliel, E.L.; Badding, V.G.; Rerick, M.N. J. Am. Chem. Soc. 1962, <u>84</u>, 2371-2377; b) Horne,
 D.A.; Jordan, A. Tetrahedron Lett. 1978, <u>16</u>, 1357-1358; c) Fleming, B.; Bolker, H.I. Can. J. Chem.
 1974, <u>52</u>, 888-893; d) Mori, A.; Ishihara, K.; Arai, I.; Yamamoto, H. Tetrahedron. 1987, <u>43</u>, 755-764; e) Ishihara, K.; Mori, A.; Yamamoto, H. Tetrahedron Lett. 1987, <u>28</u>, 6613-6616; f) Takasu, M.;
 Naruse, Y.; Yamamoto, H. Tetrahedron Lett. 1988, <u>29</u>, 1947-1950;
- a) Hanessian, S.; Plessas, N.R. J. Org. Chem. 1969, <u>34</u>, 1035-1044; b) David, S.; Thieffry, A.; J. Chem. Chem., Perkin Trans. 1, 1979, 1568-1573. c) David, S.; Hanessian, S. Tetrahedron, 1985, <u>41</u>, 643-663.
- a) Lipták, A.; Jodál, I.; Nánási, P. Carbohyd. Res. 1975, 44, 1-11; b) Garegg, P.; Hultberg, H.;
 Wallin, S. Carbohyd. Res. 1983, 108, 97-101; c) Yamada, M.; Tachibana, K.; Kuroda, T. Carbohyd.
 Res. 1983, 112, 189-200; d) Johansson, R.; Samuelsson, B. J. Chem. Soc. Pekins Trans 1, 1984, 2371-2374; e) Binkley, R.W.; Goewey, G.S.; Johnston, J.C. J. Org. Chem. 1984, 49, 992-996; f)
 Takano, S.; Kurotaki, A.; Sekiguchi, Y.; Satoh, S.; Hirama, M.; Ogasawara, K. Synthesis, 1986, 811-817.
- a) Mori, A.; Fujwara, J.; Maruoka, K.; Yamamoto, H. J. Organomet. Chem. 1985, 285, 83-94; b)
 Fujiwara, J.; Fukutani, Y.; Hasegawa, M.; Maruoka, K.; Yamamoto, H. J. Am. Chem. Soc. 1984, 106, 5004-5005. c) Barton, D.H.R.; Boivin, J.; Crépon, E.; Sarma, J.; Togo, H.; Zard, S.Z., Tetrahedron, 1991, 47, 7091-7108; d) For a review see: Maruoka, K.; Yamamoto, H. Tetrahedron, 1988, 44, 5001-5032.
- 6 Alexakis, A.; Mangeney, P. Tetrahedron : Asymmetry, 1990, 1, 477-511.
- 7 Leggetter, B. E.; Brown, R.K. Can. J. Chem. 1964, 42, 990-1008.
- 8 Omura, K.; Swern. D., Tetrahedron, 1978, <u>34</u>, 1651-1660.
- 9 Baker, D.C.; Horton, D.; Tindall Jr. C.G. Carbohyd. Res. 1972, 24, 192-197.
- 10 Bhattacharjee, S.S.; Gorin, P.A.J. Can. J. Chem. 1969, 47, 1195-1206.
- 11 Kabalka, G.W.; Varma, M.; Varma, R.S., J. Org. Chem., 1986, <u>51</u>, 2386-2388.
- 12 Czernecki, S.; Georgoulis, C.; Provelenghiou, C., Tetrahedron Lett., 1976, 3535-3536.
- 13 Gelas, J.; Horton, D., Carbohyd. Res., 1978, 67, 371-387.